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Introduction

Decision theory analyzes decision making un-
der risk. Agents do not know the precise out-
come from their decision, but they know the
probability distribution of the outcomes. A
popular example in finance is the portfolio
choice model. The mean and variance of the pay-
off depends on the agent's decision--a risk
averse agent settles for a lower expected payoff
in return for less risk., Brainard, in a seminal
paper, applied portfolio analysis to macroeco-
nomic policy decisions. He showed that if the
policy multiplier were random, then a cautious
(risk averse) policy was optimal.

Brainard also suggested that even if the mul-
tiplier were a parameter (i.e., not random),
then a cautious policy would still be optimal
because decision makers don't know the precise
value of the true multiplier. Errors in infer-
ence cause the agent to make suboptimal deci-
sions. If the multiplier is a parameter, how-
ever, then no mean-variance trade-off exists for
the population values, the population variance
does not depend on the agent's decision.

The unknown coefficient control problem lies
in a no-man's land between estimation and con-
trol theory. Asymptotically the sampling errors
disappear, but any finite sample inference er-
rors affect decisions. Bayesian econometricians
comfortably trod the no-man's land by assigning
priors to the unknown parameter. Indeed,
Zellner proposed an optimal Bayesian control
rule that justifies Brainard's suggestion.

Statistical decision theory also can address
the problem. Zaman examines the class of admis-
sible decision rules and proposes several clas-
sical alternatives.

This paper reviews a simple unknown parameter
control problem. Section 1 compares the random
coefficient specification with the unknown pa-
rameter specification. Section 2 examines the
unknown parameter control problem in more detail
and proposes criteria for acceptable rules.
Section 3 presents Monte Carlo evidence for
three rules and shows that Zellner's suggested
Bayesian rule does not dominate.

1. Random Versus Unknown

Random Coefficients. The outcomes 1in many
decision problems are random, and the uncertain-
ty usually affects the decision rule. We use a
portfolio selection problem in this section to
illustrate. Consider an agent who must decide
how many shares (z) of a risky asset to pur-
chase. The per share payoffs (d) vary randomly;
in addition some idiosyncratic risk (v) also af-
fects the total payoff (p),

(1.1) p=dz + v.

The agent knows the distribution of the random
variables,
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(1.2) ~ N

v

or alternatively we could state that the agent's
information set (I) contains the distribution of
the payoff conditional on the number of shares
purchased,

(1.3) P(p'z) ~ N(Gz, oj 22 + 03).

both the mean and variance of the outcome
on the shares purchased. The agent's de-
cision rule depends on her attitude toward risk
versus expected return and the parameters that
characterize the conditional distribution. To
illustrate, suppose her loss function is

Notice
depend

R 2
LY = E(p-p)% = (Ep-p*)? + ci

(1.4)
- (62-p*)2 + 02 Z2 . 02
d v

*
where p represents a target payoff. The loss
function is a typical control theory "tracking"
criterion, rather than the more familiar expect-
ed utility function used in portfolio theory.
However, the first term can be interpreted as
the disutility resulting from deviations of the
expected payoff from its target while the second
term measures the disutility of risk. The
“tracking” loss function implicitly assigns
equal welghts to both components of the loss.
The optimal decision is

z* = Gp*/(éz + 02).

(1.5) 1

Notice the decision rule is not random. The
agent's attitude toward risk and the known pa-
rameters in the payoff distribution function af-

fect the decision rule, but realizations of the

random variable have no effect.

The portfolio problem is essentially a popu-
lation or asymptotic theory of decision making
under uncertainty. Agents act cautiously be-
cause they are risk averse. The population
variance (eq. 1.3) depends on the agent's deci-
sion; therefore, agents can choose risk-expected
return trade-offs. Uncertainty about outcomes
affects thelr decisions, but they have full
knowledge of the structure. A sample realiza-
tion has no effect on the decision rule.

Unknown Coefficients. William Brainard ap-
plied portfolio theory to macroeconomic policy
decision making. He compared the policy multi-
pliers to the per share payoffs. Macroeconomic
variables, say income (y), depend on policy in-
strument settings (x) via the "multiplier” (B)
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and some normally distributed independent random
shocks (u).

(1.6) y = 8x + u

Brainard carefully specified and analyzed the
case with a random policy multiplier. He showed
that the variance of the outcome depended on the
squared instrument setting (as in eq. 1.4) indi-
cating that the optimal policy is a "cautious”
policy (as in eq. 1.5); policy makers trade ex-
pected return against variance.

Brainard also suggested, and many followed
his suggestion, that even if the policy multi-
plier were a parameter (i.e., not a random vari-
able) then a mean-variance trade-off still
exlsts because the true multiplier is unknown.
Policy makers must rely on a random estimate of
the unknown parameter when making actual deci-
sions,

(1.7 b = b(y, x)

where (y, 5) denote the (n x 1) vectors of
sample observations.

This subtle change in the agent's information
set creates a substantial change in the decision
problem. In the random coefficient specifica=-
tion the agent's decision affects the expected
outcome and the population variance (see equa-
tion 1.3)--a mean-variance trade-off exists for
the decision maker. When the model specifica-
tion is a fixed parameter specification (even if
the parameters are unknown) the mean depends on
the instrument setting, but the population vari-
ance is independent of the agent's decision,

(1.8) P(y|x) ~ N(Bx, oo),

no mean-variance trade-off exists.

Ignorance of the true parameter value, how-
ever, can cause the agent to make suboptimal de-
cisions and increase the value of the loss, but
the variance of the outcome is independent of
the agent's decision.

Consider the decision problem

(1.9) 1Y = min E(y-y*)2
x

subject to the fixed parameter model outlined in
equation (l1.6), where the agent's information
set is limited to observable data (y, x). Let
x* denote the value of the control that mini-
mizes the population loss function, i.e., when

B 1is an element of the agent's information set,

(1.10) x* = y*/g.,

When the agent bases a decision on an estimate
of the parameter, the control rule is a random
variable that depends on the random sample.
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Let
(1.11) x = y*/b(y, x) = x(b, y*)

denote the random control rule, Then the loss
function (1.9) can be written as

(1.12) = BZE x(b, y*) = x* 2 + 02 .
u

Sampling error increases the loss. This is a
small sample problem; the population variance
does not depend on the control setting and no
traditional risk-return tradeoff exists.

2. Control With An Unknown Parameter

This section considers the unknown parameter
control problem in more detail. The decision
maker's problem is to choose a control x (or
estimator b ) that minimizes the loss in equa-
tion (1.12). The necessary condition is

(2.1 E[x(b, y*)] = x*.

The problem 1is that the control is an inverse
function of the random variables. Classical es-
timators of the unknown parameter which have de-
sirable properties may yileld a control rule with
very undesirable properties. For example, sub-
stituting the maximum likelihood estimate

2
(2.2) bml = I xiyi/z X

for the unknown parameter in the control rule

(2.3) X

2
= yk
me =Y o xi/E Xy

i

leads to an unbounded loss function since the
reciprocal of the maximum likelihood estimate
has no finite sample moments. The control rule
is discontinuous at b = 0 and the loss func-
tion unbounded as b goes to zero. Figure 1
illustrates the problen.

The vertical axis shows the reciprocal of the
maximum likelihood estimate (1/b) and the hor-
izontal axis the value of the estimated coeffi-
cient b. The shaded areas in quadrants II and
1V show the admissible regions, while the rect-
angular hyperbolas represent the maximum likeli-
hood control. For any value of B, such as
Bg> the vertical distance between the hyperbola
and the horizontal line through l/ﬂ0 repre-—
sents the error due to sampling. The failure of
the maximum likelihood control to stay within
the admissible region as b goes to zero indi-
cates the potential for a superior estimator in-
corporating this information., The discontinuity
at zero gives an unbounded loss.

Of course, small sample problems also fre-
quently occur in econometrics. The small sample
distribution for many estimators 1is intractable,
or small sample moments don't exist, e.g., most
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simultaneous equation estimators have no finite
sample moments. As a result, econometricians
often rely on asymptotic properties to rank es-—
timators.

1f we use asymptotic properties to rank con-
trol rules, then the control based on the maxi-
mum likelihood estimate in equation (2.3) 1is op-
timal2 As long as the unknown parameter is not
zero,“ the reciprocal estimator 1/b 1is consis-
tent and minimizes the asymptotic variance of
the loss function. The control is proportional
to the estimator, so no other consistent control
reaches a lower probability limit of the loss
function.

Thus we have a paradox: the maximum likeli-
hood control leads to an unbounded finite sample
loss and therefore 1s dominated by many rules
(e.g., x = 0), but asymptotically no rule domi-
nates the maximum likelihood rule. This Sug-
gests criteria that an acceptable rule must sat-—
isfy.

Let x = x(y, y*) denote the random control
rule and x* = y*/8 the population value of the
optimal control rule.

Criteria:

Large sample: (i) consistency, plim x = x*,
in the limit the control converges to the opti-
mal population value; and (ii) asymptotic effi-
clency, plim ¥n (x-x*) = 0, 1in the limit the
control converges to the maximum likelihood con-
trol.

Small sample: bounded loss, the control has
finite first and second moments so that
E(x—x*)2 exists.

Section 3 proposes and presents Monte Carlo
evidence from some rules that satisfy the crite-
ria.
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3. Control Rules and Evidence

Zellner & Geisel, and Zellner proposed a
Bayesian solution to the unknown parameter con-
trol (reciprocal estimation) problem by describ-
ing the unknown parameter with a prior distribu-
tion. They chose a diffuse prior
(P(B)x = » < B< =) leading to a posterior
which is the sample distribution of the unknown
parameter, Minimizing the resulting posterior
expected loss function leads to the minimum ex-—
pected loss (MELO) control:

Eb_ y*
*
(3.1) x - Bt By
MELO 2 2 2
Eb g + o
ml b
mi

This has the same form as the random coefficient
control rule in equation (1.5).

An operational version of the control rule
replaces the population moments with the sample
moments leading to a "cautious” policy as Brain-
ard suggested. A small sample mean-variance
trade-off exists because the agent believes (as
reflected in the prior distribution) the multi-
plier is random. As the sample gets large the
maximum likelihood estimate dominates the prior
and the MELO control converges to the maximum
likelihood control.

Zaman [198la, b] extended Zellner's work on
the reciprocal estimator, or unknown parameter
control problem for a finite sample drawn from a
normal population. Zaman [1981b] shows that ad-
missible rules (i.e., rules that are not sto-
chastically dominated for all values of the true
parameter) must lie in the shaded regions of
quadrants II and IV in figure 1. Zellner's MELO
rule is admissible, but of course so are many
others. We examine three rules that lie in the
admissible region and satisfy the criteria in
section 2.

The first is Zellner's MELO rule. This rule
has the intuitively appealing pgoperty that the
noisier the estimate (larger s relative to
b¢ ) the smaller the control. And of course, as
the sample size grows the MELO control converges
to the maximum likelihood control at rate 1/n.
Another important property, however, is the be-
havior of the control as a function of the p%-
rameter size. _As the estimate gets large (b
relative to s ) the MELO control goes to the
maximum likelihood control (1/b). More impor-
tant is the behavior of the control as the esti-
mate goes to zero. The control must converge to
some value to bound the loss. The MELO control
goes to zero since the estimated variance in the
denominator is nonzero.

The second rule 1s a modified MELO rule
(MMELO) that makes the control more cautious for
small estimated coefficients. ’

(3.2)  x(MMELO) = bL* [1/(1+ s%/b5 ) & = 8
g mf

Econometrics emphasizes the behavior of the es-
timator as the sample size varies. In the deci-
sion problem one mightiemphasize the behavior of
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the control as the size of the unknown parameter
varies. The maximum likelihood estimates of the
unknown parameter are (normally) distributed
around the true value. For large (absolute)
values of the unknown parameter, reciprocals of
the estimates reasonably approximate the recip-
rocal of the true value. For small (absolute)
values of the unknown parameter, however, recip-
rocals of the estimates that lie between the
true parameter and zero, or reciprocals of esti-
mates with the wrong sign are very bad approxi-
mations to the reciprocal of the true parameter.
Therefore, we modified the MELO rule to make it
more cautious when the estimated coefficient is
small.

The third rule we examine 1s a hybrid rule
suggested by Zaman [1981b] that recognizes the
discontinuity.

y*/bml Ibl > s

(3.3) x(DIS) =

*
y-bmz lbl <s

We modified Zaman's rule to make the switching
point a fuunction of the estimated sample stan-—
dard deviation. The rule uses the reciprocal to
determine the control for large values of the
estimated coefficient (when the risk of disas-
trous errors is small) and sets the coatrol pro-
portional to the estimated coefficient when the
estimate is small (when the risk of disastrous

Since the estimate is consis-

errors is large).
tent the rule coaverges to the maximum likeli-
hood rule as the sample size gets large.

Since no rule dominates for all parameter
values and sample sizes we ran Monte Carlo simu-
lations to determine the sensitivity of the re-
sults to particular parameter values and sample

sizes. We varied the parameter g from .00l to
100 and the sample size n from 10 to 100. We
drew a sample y(n) from a normal population
with mean B and standard deviation of 2. For
each sample we computed control galues x(-)2
and evaluated the loss L(.) = 8 (x(-) - x*) .
We repeated the experiment 100 times and calcu-
lated the mean and standard deviation of the
loss. Table 1 summarizes the results for se-
lected parameter values and sample sizes.

Table 1 gives summary statistics for four
rules. The first two columns of the table list
the results for the maximum likelihood rule
which violates the bounded loss criterion. The
large standard deviations (these are Monte Carlo
sample deviations and therefore must be bounded)
indicate unboundedness is indeed a problem. The
large sample standard deviations for the maximum
likelihood control persisted even when we in-
creased the sample size to 100.

The next six columns compare rules that sat-
isfy the criteria. When the parameter is very
small (.001), all the bounded loss rules cau-
tiously do very little and the loss is one. As
the parameter gets larger, the control rules get
more active. The discontinuous control achieves
the lowest mean loss at a parameter value of one
but displays a higher standard deviation. The

TABLE 1

Mean and Standard Deviation of the Loss Function

X(ML) X(MELO) X(MMELO) X(DIS)
Parameter
Value n g u u g u g
SAMPLE SIZE = 10
0.001 1.0290 0.3020 1.0000 0.0003 1.0000 0.0003 1.0000 0.0012
1.000 13.0200 50.5200 0.6673 0.1860 0.6356 0.3330 0.3226 0.4442
10.000 0.0033 0.0049 0.0054 0.0057 0.0036 0.0048 0.0047 0.0082
SAMPLE SIZE = 25
0.001 0.9985 0.0266 1.0000 0.0002 1.0000 0.0001 1.0000 0.0007
1.0000 4,8490 39.9600 0.6629 0.1051 0.6266 0.3202 0.1435 0.1626
10.000 0.0017 0.0027 0.0026 0.0029 0.0013 0.0017 0.0015 0.0021
SAMPLE SIZE = 50
0.001 1.0200 0.1473 1.0000 0.0001 1.0000 S5E~6 1.0000 0.0006
1.0000 0.1644 0.7334 0.6397 0.0735 0.6362 0.2728 0.0784 0.0938
10.000 0.0007 0.0010 0.0018 0.0019 0.0008 0.0011 0.0008 0.0010
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modified MELO rule does slightly better at larg-
er parameter values. As one would expect, in-
creasing the sample size improves the accuracy
of the estimates and the performance of all the
rules. However, the distribution of 1/b does
not seem to collapse rapidly. Increasing the
parameter value also dramatically improves the
performance of all the rules.

Conclusion

This paper examined the case for cautious
policy when the decision maker is unsure about
the policy multiplier. We contrasted a random
policy coefficient with an unknown policy param-—
eter. A random policy coefficient always leads
to a cautious policy. An unknown policy parame-
ter, however, leads to an asymptotically aggres-
sive (certainty equivalence) policy.

In finite samples unknown parameters in gen-
eral lead to intractable small sample distribu-
tions with no closed-form optimal rules. Bayes-—
ian representations manage to blend the small
sample and asymptotlc results by combining the
prior and likelihood functions to form a poste-
rior distribution. Bayesian rules based upon a
diffuse prior yield a unique rule. Yet statis-
tical decision theory shows that a broad class
of rules are admissible for the policy decision
problem. Our Monte Carlo results indicate that
these Bayesian rules are not optimal. Most de-
cision problems, as demonstrated by the examples
in this paper where the discontinuity occurs at
the origin, embody more information tham is
characterized by a diffuse prior.

Footnotes

1We choose to contrast an unknown (but fixed)
parameter specification with a random coeffi-
cient specification because macroeconometric
modelers typically specify relationships with
fixed but unknown parameters. Control applica-
tions (if they acknowledge the parameter uncer-
tainty) substitute a random coefficient specifi-
cation for the unknown parameters. Of course,
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one could specify a random, but unknown, coeffi-
cient model. Then the population variance would
depend on the agent's decision and the unknown
variance of the random coefficient.

2If the unknown parameter is zero, the loss
is independent of the control and any rule mini-
mizes (maximizes) the loss.
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